Abstract

Developing affordable and earth-abundant equivalents to precious metal-based catalysts for chemical processing is one of the greatest challenges in developing a renewable energy future. The rationale of this review article is to endow with a progress update on the electrocatalytic materials synthesis and their application in direct alcohol fuel cells. More specifically, in this review we have focused on the methods employed for the synthesis of Palladium core-shell nanostructure (PCA) catalysts and possible solutions for controlling synthetic parameter-dependent properties rather than on specific results. This review highlights the fabrication of PCA and their usefulness for alcohol oxidation reaction (anodic reaction) that occurs in alcohol powered fuel cells. Various known methods of preparation are summarized with an emphasis on the dependence of electrocatalytic activity on the chemical, structural and surface properties of PCA. Recent advances in the field of synthetic methodology, electrocatalysis, catalytic characterization as well as half-cell/real fuel cell performance assessment are discussed in detail. Finally, recent trends and future outlook on the fabrication of Pd based core-shell nanostructures as fuel cell electrocatalysts are explored. Special emphasis has been given to alcohol oxidation and their implications in fuel cells throughout the study.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.