Abstract

We present an internal pumping strategy to enhance solute fluxes in polymer gels. The method is based on electroosmotic flow driven by an electric field applied across a gel that has been doped with charged colloidal inclusions. This work is motivated by the need to enhance the transport in gel-based biosensor devices whose response dynamics are often mass transfer limited. In this case, polyacrylamide gel slabs were doped with immobilized, charged silica colloids, and the flux of a fluorescent tracer was measured as a function of applied field strength, the volume fraction and size of the colloidal silica inclusions, and the bulk electrolyte composition. Significant flux enhancements were achieved with applied electric currents on the order of a few mA. Control experiments indicated that the flux enhancement was not due to any distortion of the gel diffusional properties in response to the presence of the inclusions. At a constant inclusion volume fraction, the electroosmotic solute flux enhancement was strongest for the smallest particle sizes that provide the highest total surface area, consistent with the electroosmotic mechanism whereby fluid flow is generated along the solid/liquid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.