Abstract

A dynamic control of the cholesteric coloration and optical clarity of aqueous (hydroxypropyl)cellulose (HPC) lyotropics is attainable under a weak electric field by employing a fluctuating ionic additive as P and T(c) shifter (P, cholesteric pitch; T(c), cloud point). The present Article demonstrates some examples of time-evolving gradation in reflection color and transparency for HPC liquid crystals containing various N-alkyl-substituted methylimidazolium salts ([CnMim][X]); this was perceivable when each anisotropic solution was sealed in a layer form between parallel slide glasses spaced by a pair of carbon electrodes and then electrified with a direct circuit. The electrooptical phenomenon was interpreted as being primarily due to generation of a disproportional dislocation of cation (CnMim(+))/anion (X(-)) constituents. Even after the electric supply was ceased, an appreciable potential difference remained in the color-gradated samples. It is suggested that the salt-containing liquid-crystalline system behaves like a quasi-capacitor as a viscous electrolytic medium of high resistance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call