Abstract

The high frequency operation of a low-voltage electrooptic modulator based on a strip-loaded BaTiO3 thin film waveguide structure has been demonstrated. The epitaxial BaTiO3 thin film on an MgO substrate forms a composite structure with a low effective dielectric constant of 20.8 at 40 GHz. A 3.9 V half-wave voltage with a 3.7 GHz 3-dB bandwidth and a 150 pm/V effective electrooptic coefficient is obtained for the 3.2mm-long modulator at 1.55 ?m. Broadband modulation up to 40 GHz is measured with a calibrated detection system. Numerical simulations indicate that the BaTiO3 thin film modulator has the potential for a 3-dB operational bandwidth in excess of 40 GHz through optimized design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call