Abstract
ABSTRACTA detailed theoretical study on the electron-related optical responses in triple δ-doped GaAs quantum wells in the presence of non-resonant, monochromatic intense laser field is presented. For this purpose, we first obtained the bound subband energy levels and their corresponding envelope wave functions of the structure for different central doping concentrations within the effective-mass approximation. Then, we calculate the effect of the non-resonant intense laser field on the optical properties of this structure using the compact-density-matrix approach via the iterative method. We found that the optical absorption coefficients and refractive index changes in the triple δ-doped GaAs quantum well can be modulated by changing the central doping concentration and the intensity of the non-resonant, monochromatic laser field. In addition, it is shown that a sufficiently intense laser field suppresses the multiple quantum well configuration towards a single potential well one and the optical response becomes practically independent of the δ-doping concentration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.