Abstract

Bismuth oxybromide (BiOBr), with its special layered structure, is known to have potential as a visible-light-driven photocatalyst. However, the rapid recombination and short lifetime of the photogenerated carriers of BiOBr restrict its photocatalytic efficiency for the degradation of organic pollutants. Given the similar ionic size of Ce and Bi, Ce atoms might be easily introduced into the crystal of BiOBr to tailor its band structure. In this study, Ce doped BiOBr (Ce-BiOBr) samples with different percentages of Ce contents were prepared via a hydrothermal method. The intrinsic photocatalytic efficiency of Ce0.2-BiOBr for the degradation of bisphenol A (BPA) was 3.66 times higher than that of pristine BiOBr under visible light irradiation. The mechanism of Ce-doping modification for the enhanced photocatalytic performance was demonstrated based on a series of experiments and DFT calculation. The narrowed bandgap, the enhanced charge separation efficiency and Ce-doping energy level contributed to the remarkable photocatalytic performance of Ce-BiOBr.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call