Abstract

Colloidal quantum dot films have seen rapid progress as active materials in photodetection, light emission, and photovoltaics. Their processing from the solution phase makes them an attractive option for these applications due to the expected cost reductions associated with liquid-phase material deposition. Colloidally stable nanoparticles capped using long, insulating aliphatic ligands are used to form semiconducting, insoluble films via a solid-state ligand exchange in which the original ligands are replaced with short bifunctional ligands. Here we show that this ligand exchange can have unintended and undesired side effects: a high molecular weight complex can form, containing both lead oleate and the shorter conductive ligand, and this poorly soluble complex can end up embedded within the colloidal quantum dot (CQD) active layer. We further show that, by adding an acidic treatment during film processing, we can break up and wash away these complexes, producing a higher quality CQD solid. The improved material leads to photovoltaic devices with reduced series resistance and enhanced fill factor relative to controls employing previously reported CQD solids.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.