Abstract

If a current of electrons flows through a normal conductor (in contrast to a superconductor), it is impeded by local scattering at defects as well as phonon scattering. Both effects contribute to the voltage drop observed for a macroscopic complex system as described by Ohm's law. Although this concept is well established, it has not yet been measured around individual defects on the atomic scale. We have measured the voltage drop at a monatomic step in real space by restricting the current to a surface layer. For the Si(111)-( [see text]3 x [see text]3)-Ag surface a monotonous transition with a width below 1 nm was found. A numerical analysis of the data maps the current flow through the complex network and the interplay between defect-free terraces and monatomic steps.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.