Abstract

Sunlight-induced reduction and dissolution of colloidal Fe-Mn (hydr)oxide minerals yields elevated concentrations of Fe 2+ and Mn 2+ in natural waters. Since these elements may be biolimiting micronutrients, photochemical reactions might play a significant role in biogeochemical cycles. Reductive photodissolution of Fe (hydr)oxide minerals may also release sorbed metals. The reactivity of Fe-Mn (hydr)oxide minerals to sunlight-induced photochemical dissolution is determined by the electronic structure of the mineral-water interface. In this work, oxygen K-edge absorption and emission spectra were used to determine the electronic structures of iron(III) (hydr)oxides (hematite, goethite, lepidocrocite, akaganeite and schwertmannite) and manganese(IV) oxides (pyrolusite, birnessite, cryptomelane). The band gaps in the iron(III) (hydr)oxide minerals are near 2.0–2.5 eV; the band gaps in the manganese (IV) oxide phases are 1.0–1.8 eV. Using published values for the electrochemical flat-band potential for hematite together with experimental pH pzc values for the (hydr)oxides, it is possible to predict the electrochemical potentials of the conduction and valence bands in aqueous solutions as a function of pH. The band potentials enable semiquantitative predictions of the susceptibilities of these minerals to photochemical dissolution in aqueous solutions. At pH 2 (e.g., acid-mine waters), photoreduction of iron(III) (hydr)oxides could yield millimolal concentrations of aqueous Fe 2+ (assuming surface detachment of Fe 2+ is not rate limiting). In seawater (pH 8.3), however, the direct photo-reduction of colloidal iron(III) (hydr)oxides to give nanomolal concentrations of dissolved, uncomplexed, Fe 2+ is not thermodynamically feasible. This supports the hypothesis that the apparent photodissolution of iron(III) (hydr)oxides in marines systems results from Fe 3+ reduction by photochemically produced superoxide. In contrast, the direct photoreduction of manganese oxides should be energetically feasible at pH 2 and 8.3.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.