Abstract
The electronic structures of GaAs/Al 0.35Ga 0.65As concentric double rings are calculated based on the effective mass envelope function theory, with and without the applied electric and magnetic field along the growth direction. The Hamiltonian matrix elements are determined through the Fourier transform method. As the heterostructure evolves from a single ring to the concentric double rings, our simulation is performed on the bound state energies of the electron and the hole. The results show that the energy levels undulate with the evolution of the ring. The applied magnetic field increases the ground state energies both of the electron and of the hole, as well as the transition energy between the first conduction subband and valence subband. However, the electric field decreases the electronic energies linearly.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have