Abstract

We theoretically investigate the electronic structures for armchair-edge graphene nanoribbons (AGNRs) under a small in-plane uniaxial strain along armchair (longitudinal) and zigzag (transversal) direction, respectively. We demonstrate that, by both the tight-binding calculation and first-principles study, the applying of a small asymmetrical strain results in variation of energy subband spacing, which opens a band gap for metallic AGNRs and modifies the band gaps for semiconducting AGNRs near the Fermi level. It is believed that these results are of importance in the band gap engineering and electromechanical applications of graphene-nanoribbon-based devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.