Abstract
Based on the tight-binding approximation, analytical solutions of the energy dispersion and band gap of armchair-edge graphene nanoribbons (AGNRs) under uniaxial strains are derived. Subsequent numerical results on band gap are found to be consistent with the analytical solutions. It is shown that the energy gap of AGNRs is sensitive to the uniaxial strains and is predicted to change with a V shape as a function of the applied uniaxial strain. It is interesting to find that the uniaxial strain could induce metal-semiconductor transition for the AGNRs with a width of n = 3m + 2 ((3m + 2)-AGNRs) and semiconductor-metal-semiconductor phase transition for the (3m + 1)-AGNRs, but no phase transition is induced for the 3m-AGNRs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Chinese Physics Letters
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.