Abstract

Ab initio molecular dynamics has been applied to construct seven sodium silicate glass models with Na2O concentration ranging from 0 to 50 mol. %. The structures of the simulated (Na2O)x(SiO2)1-x glasses are critically analyzed and validated by comparing with available experimental data. Because the initial seed model is based on a near-perfect continuous random network model for amorphous SiO2 with periodic boundaries, the structures of these silicate glasses are highly reliable. The electronic structure, interatomic bonding, and the mechanical and optical properties of seven models are calculated using the first-principles density functional method. In particular, a single quantum mechanical metric, the total bond order density (TBOD), is used to characterize the internal cohesion of sodium silicate glass. This is a significant step beyond the traditional analysis of glasses based purely on the geometric parameters. The TBOD value is found to decrease with increasing Na content, indicating the destruction of silica network connectivity. The calculated mass density and refractive index increase with x are in good agreement with experiment. The elastic coefficients and bulk mechanical properties exhibit a nonlinear variation in the series and depend greatly on the internal bonding and cohesion of the glass. The calculated Poisson's ratio indicates that the glass becomes more ductile with the addition of Na2O. Our results indicate that sodium silicate glass tends to be unstable for x greater than 0.4 due to the total destruction of the SiO2 network.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call