Abstract
Density functional theory (DFT) calculations were performed using a MPWB1K functional to interpret the charge transport (CT) properties of stacked annelated β-trithiophene molecules. The goal was to help understand how the chemical composition, face-to-face stacking, intra- and intermolecular correlations, and the applied electric field affect the CT properties of this organic semiconductor compared with those of the edge-to-face "herringbone" motif. The variations in the frontier molecular orbitals, energy gap, nonadiabatic electron attachment energies (EAE), and vertical detachment energies (VDE) were investigated under an external electric field as a function of the number of stacked layers (n). Two possible CT pathways, monomer-to-monomer (MM) and dimer-to-dimer (DD) transports, were postulated to determine the charge carrier conductivities of these molecules. The results highlight that the intermolecular electronic couplings and electrostatic interactions can significantly affect the stacking geometry, even in more extended structures; displaced stacks with smaller interlayer spacing resulted in more compact stacking and, thus, higher CT efficiency; face-to-face stacking geometries can help to reduce the energy gap and VDE. Despite the fact that common thiophene-based oligomers adopting edge-to-face herringbone motifs exhibited p-type (hole-transporting) characters, the face-to-face stacked models based on annelated β-trithiophenes exhibited remarkably increased n-type (electron-transporting) performances. The electric field in the z-direction produced a small influence on the DD charge transport, whereas both electron and hole mobilities decreased dramatically in the MM case. More importantly, in MM charge transport, the electric field increases the hole mobility so that it is higher than that of the electron.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.