Abstract
The great potential of organic heterostructures for organic device applications is exemplified by the targeted engineering of the electronic properties of phthalocyanine-based systems. The transport properties of two different phthalocyanine systems, a pure copper phthalocyanine (CoPc) and a flourinated copper phthalocyanine–manganese phthalocyanine (F16CoPc/MnPc) heterostructure, are investigated by means of density functional theory (DFT) and the non-equilibrium Green’s function (NEGF) approach. Furthermore, a master-equation-based approach is used to include electronic correlations beyond the mean-field-type approximation of DFT. We describe the essential theoretical tools to obtain the parameters needed for the master equation from DFT results. Finally, an interacting molecular monolayer is considered within a master-equation approach.
Highlights
Implementing molecular spintronics requires the understanding and the ability to modify and control charge-transport characteristics of organic molecules
While for the CoPc/CoPc system the spin polarization vanishes with increasing bias voltage, the F16CoPc/ manganese phthalocyanine (MnPc) stack shows maxima of the spin polarization at approximately Vbias = ±0.5 V of over 60% and the polarization does not vanish for larger bias voltages
We have reported on the transport properties of two different phthalocyanine structures
Summary
Implementing molecular spintronics requires the understanding and the ability to modify and control charge-transport characteristics of organic molecules. The electronic structure is obtained by DFT calculations using the common approach of constructing a model device for which the molecule of interest together with additional electrode atoms (scattering region, see below Figure 2e) are sandwiched between two semi-infinite metallic electrodes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.