Abstract

We present a brief overview of the advanced methodology which has been developed and applied to the study of phase stability properties in substitutional alloys. The approach is based on the real space version of the Generalized Perturbation Method within the Korringa-Kohn-Rostoker multiple scattering formulation of the Coherent Potential Approximation. Temperature effects are taken into account with a generalized meanfield approach, namely the Cluster Variation Method, or with Monte-Carlo simulations. We show that this approach is well suited for studying ground state properties of substitutional alloys, for calculating energies of idealized interfaces and antiphase boundaries, and finally to compute alloy phase diagrams.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.