Abstract

Cation disorder is an important design criterion for technologically relevant transition-metal (TM) oxides, such as radiation-tolerant ceramics and Li-ion battery electrodes. In this Letter, we use a combination of first-principles calculations, normal mode analysis, and band-structure arguments to pinpoint a specific electronic-structure effect that influences the stability of disordered phases. We find that the electronic configuration of a TM ion determines to what extent the structural energy is affected by site distortions. This mechanism explains the stability of disordered phases with large ionic radius differences and provides a concrete guideline for the discovery of novel disordered compositions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.