Abstract

The gas phase He(I) photoelectron spectra of uracil (I) and its derivatives, 5-fluorouracil (II), ftorafur (tegafur, 5-fluoro-1-(tetrahydro-2-furyl)uracil) (III), 2′,3′-dideoxyuridine (IV) and 2′,3′-dideoxy-5-fluorouridine (V), have been studied by means of MNDO calculations. The first four photoelectron spectral bands of I and II are π 1, n 1, π 2 and n 2 from the top, respectively. In contrast to these cases it is extremely difficult to assign the photoelectron spectral bands n 1, π 2 and n 2 of III because of their complete overlapping with the oxygen atom n orbital band of the tetrahydrofuryl group. In order to solve this problem the difference spectrum method has been used, and the exact peak positions have been successfully detected. The photoelectron spectral band shifts were reasonably analyzed in terms of the conjugative, the short-range inductive and the long-range molecular polarization effects. Although for I, II and III the keto forms are stable, it has been revealed that in the case of IV or V both a keto and an enol form (at least) coexist predominantly in the gas phase. The π 1 ionization energy of the predominant enol form of IV is completely indifferent to the 5-fluorination, as is the case of the keto form of I. This unusual finding can be explained as follows: the molecular polarization and the electron-withdrawing inductive effects of the 5-fluorine atom are almost cancelled by the π conjugative effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.