Abstract

In this study, we investigate the parabolic potential effects on the ground and excited energy states of two-electron quantum dot with impurity inside an infinite spherical confining potential well. The wave function and energy eigenvalues were calculated using a modified variational optimization procedure based mainly on quantum genetic algorithm and Hartree–Fock–Roothaan method. The results show that the parabolic potential and impurity charge have a strong effect on the energy states and ionization energies. It is worth pointing out that as impurity charge increases, the ionization energy rises, but the ionization dot radius decreases. On the other hand, as parabolic potential increases, the ionization energy decreases, but the ionization dot radius increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call