Abstract

The electronic structure of the LaO molecule is studied using frozen-core four-component multiconfigurational quasidegenerate perturbation theory. The ground state and nine experimentally observed excited states are examined. The ground state is (2)Sigma(1/2)(+) and its gross atomic orbital population is La(5p(5.76)6s(0.83)6p(0.14)p(*(0.21) )d(*(1.17) )f(*(0.26) )) O(2p(4.63)), where p*, d*, and f* are the polarization functions of La that form molecular spinors with O 2ps. We found that it is not necessary to consider the excitation from the O 2p electrons when analyzing the experimental spectra. This validates the foundation of the ligand field theory on diatomic molecules, including the La atom where only one electron is considered. The spectroscopic constants R(e), omega(e), and T(0) calculated for the ground state and low-lying excited states A'((2)Delta(3/2)), A'((2)Delta(5/2)) A((2)Pi(1/2)), and A((2)Pi(3/2)) are in good agreement with the experimental values.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.