Abstract

The ground state electronic structure of copper corroles has been a topic of debate and revision since the advent of corrole chemistry. Computational studies formulate neutral Cu corroles with an antiferromagnetically coupled Cu(II) corrole radical cation ground state. X-ray photoelectron spectroscopy, EPR, and magnetometry support this assignment. For comparison, Cu(II) isocorrole and [TBA][Cu(CF3)4] were studied as authentic Cu(II) and Cu(III) samples, respectively. In addition, the one-electron reduction and one-electron oxidation processes are both ligand-based, demonstrating that the Cu(II) centre is retained in these derivatives. These observations underscore ligand non-innocence in copper corrole complexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.