Abstract
Solution electrochemical studies have been conducted of the principle lumophores, dopants, and hole-transport agents of aluminum-quinolate(Alq3)-based organic light-emitting diodes (OLEDs) along with the characterization of their electrogenerated chemiluminescence (ECL). In acetonitrile/benzene solvent mixtures, Alq3 shows single one-electron reduction and oxidation processes, with a separation between the first oxidation and first reduction potentials, ΔEelectrochemical = 3.03 V, close to the estimates of energy difference between HOMO and LUMO levels obtained from absorbance spectra of thin films of Alq3, ΔEoptical = 3.17 eV. A new sulfonamide derivative of Alq3, (Al(qs)3), showed a positive shift (ca. 0.32 V) in the first reduction potential versus the parent molecule, and resolution of the overall reduction process into three successive, chemically reversible, one-electron reductions. Two successive one-electron oxidations are seen for 4,4‘-bis(m-tolyphenylamino)biphenyl (TPD), a hole-transporting mat...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.