Abstract

We study the electronic structure of a magnetic quantum ring formed by inhomogeneous magnetic fields, where electrons are confined to a plane, and the magnetic fields are zero inside the ring and constant elsewhere. The energy states that deviate from the Landau levels are found to form the magnetic edge states along the boundary regions of the magnetic quantum ring. The probability densities of these magnetic edge states are found to be well corresponded to the circulating classical trajectories. In contrast to magnetic or conventional quantum dots, the eigenstates of the magnetic quantum ring show angular momentum transitions in the ground state as the magnetic field increases, even without including electron-electron interactions. For a modified magnetic quantum ring with the distribution of nonzero magnetic fields inside the ring and different fields outside it, we also find similar behaviors such as the angular momentum transitions in the ground state with increasing the magnetic field.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.