Abstract

This work investigates, using density functional theory (DFT), the localization of electrons and holes produced by irradiation in LiF crystals doped with Ti. We show that the Ti can act either as an electron trap, when located at an interstitial position of the LiF lattice, or as a trap for holes by substituting a Li atom. We also observe that an excess electron is localized in a Ti p-state while a hole localizes in a Ti d-state. The localization of the hole in this state when the Ti substitutes a Li is supported by results reported in the literature where it was assumed that the Ti substitute is a hole trap. The defect energy levels obtained in this work agree quite well with those reported in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.