Abstract

Soft-x-ray photoemission spectroscopy has been used to characterize GaAs(100) surfaces and interfaces grown by molecular-beam epitaxy and prepared by the thermal desorption of a protective As coating. The samples studied were grown and arsenic capped identically to those used in a previous study [Brillson et al., J. Vac. Sci. Technol. B 6, 1263 (1988)]. In this previous work, ``unpinned'' Schottky-barrier formation was reported, with barrier heights over a wide (0.75-eV) range. This is a striking result, as it was previously believed that all metals will pin GaAs surfaces in a narrow energy range near the middle of the band gap. This large range of barrier heights later led to the suggestion that the (100) surface could become an insulating layer that could screen out the effects of metal-induced gap states. Motivated by this work, we have studied Al and Au Schottky barriers since the deposition of these two metals gave the extreme low and high barriers in the 0.75-eV range. We have also characterized the clean surfaces prepared by desorbing the As caps at different temperatures. The As 3d and Ga 3d core levels showed that the surface stoichiometry could be varied significantly with the desorption temperature. The As 3d line shape was found to be the best indication of the surface stoichiometry after the anneal. The valence-band spectra did not show any strong features which could be used to determine when the sample was completely decapped. The electronic structure of the surface layer was investigated experimentally, and no evidence of an insulating reconstruction was found. In our study of band bending, we found that the low-doped samples used here and in the earlier study showed significant photovoltages resulting in incorrect band-bending measurements. We also found that the Au measurements are made difficult by the presence of core-level shifts due to Au-Ga alloying. After solving the problems with the photovoltages and alloying, we found that the barriers heights for Au and Al differ by only 0.25 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call