Abstract

Decomposition of energetic molecules such as pentaerythritol tetranitrate is accompanied by extensive changes in their electronic configuration and thus is challenging for ab initio Born-Oppenheimer molecular dynamics simulations. The performance of single-determinant methods (in particular, density-functional theory) is validated on electronic structure and molecular dynamics simulations of RO-NO(2) bond dissociation in a smaller nitric ester, ethyl nitrate. Accurate description of dissociating molecule requires using unrestricted, spin-symmetry-broken orbitals. However, the iterative self-consistent field procedure is prone to convergence failures in the bond-breaking region even if robust convergence algorithms are employed. As a result, molecular dynamics simulations of unimolecular decomposition need to be closely monitored and manually restarted to ensure seamless transition from the closed-shell to open-shell configuration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.