Abstract

Electronic band structure and lattice dynamical properties of CaxMg1−xS alloys in the rock-salt phase have been investigated. The calculations are performed in the framework of ab initio pseudo-potential approach within the generalized gradient approximation. Reasonable agreement is generally obtained between our results and the available experimental observations and previous calculations. The deviation of the alloy lattice constant and bulk modulus from linearity has been examined and discussed. Fundamental band gaps and Г–X and Г–L separations in higher-lying conduction bands are predicted. In agreement with reflectivity spectrum and recent optical absorption spectrum measurements, CaS in the rock-salt phase is found to be an indirect band-gap (Г–X). Similarly to CaS, the electronic band structure calculations showed that MgS is also an indirect band-gap (Г–X) semiconductor. However, a system transition between indirect and direct structures has been predicted in the Ca concentration range 0.12–0.83. Upon alloying the phonon modes are significantly changed showing that the longitudinal optical–transverse optical (LO–TO) splitting becomes narrower as one proceeds from pure rock-salt MgS to pure rock-salt CaS.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call