Abstract

The structural, phase stability, elastic and electronic properties of Sb-doped BBi have been systematically investigated in the zinc blende phase by means of the first-principle approach based on the density functional theory (DFT). The structural and elastic properties were computed by using the generalized gradient approximation proposed by Wu and Cohen (WC-GGA). Specifically, the calculated basic structural parameters, such as the lattice constant and bulk modulus, are in good agreement with the existing experimental measurements and theoretical calculations. The phase stability of BBi1-xSbx alloys in the zinc blende and rock salt phases has been investigated with the determination of the transition pressures (Pt) from the zinc blende (B3) to the rock salt (B1) phase. The electronic band structures were determined using the Tran–Blaha-modified Johnson functional. Furthermore, we investigated the mechanical properties and anisotropic behavior of the BBi1-xSbx alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call