Abstract
The first ab initio calculations of the vertical excitation energies and oscillator strengths are presented for the neutral electronic transitions of methyl formate, C(2)H(4)O(2). The highest resolution VUV photoabsorption spectrum of the molecule yet reported is presented over the wavelength range 115 to 310 nm (10.8 to 4.0 eV) revealing several new spectral features. Valence and Rydberg transitions and their associated vibronic series, observed in the photoabsorption spectrum, have been assigned in accordance with new theoretical results. The calculations have been carried out to determine the excitation energies of the lowest energy ionic states of methyl formate and are compared with a newly recorded He(i) photoelectron spectrum (10.4 to 17.0 eV). New vibrational structure is observed in the first photoelectron band. The photoabsorption cross-sections have been used to calculate the photolysis lifetime of methyl formate in the upper stratosphere (20-50 km).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.