Abstract
We consider a microscopical model for the Zn-doped CuO2 plane with Zn impurities being described as vacancies for the d-states on Cu sites. A reduction of the original p-d model to an effective one-band model results in the t-J model with vacancies for the spin 1/2 d-states at the Zn-sites. By employing the T-matrix formalism for the Green functions in terms of the Hubbard operators the density of electronic states (DOS) is calculated. Symmetry analysis of the perturbation matrix shows that in the system with d-type electronic wave functions additional DOS of d-, p- and s-types appear due to the perturbation of local energy levels and the interaction between nearest neighbors around the vacancy. The local and resonant state formation caused by Zn impurities is analyzed.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have