Abstract

In aromatic systems that contain an amino group, there is competition between protonation on a carbon atom of the skeleton and protonation on the amino group. Herein, we studied the photofragmentation of protonated 1-aminopyrene in a cold ion trap and mainly observed the protonated amino tautomer, which led to fragmentation pathways through the loss of H or NH3 groups. Several excited states were assigned, among which the fourth excited state showed broadened bands, thus indicating a fast decay that was attributed to the presence of a πσ* charge-transfer state by comparison of the experimental results with ab initio calculations. We deduced the πσ* transition energies in protonated aromatic amino compounds of increasing size directly from the ionization potentials of the neutral aromatic unsubstituted molecules. Tautomers that were protonated on a carbon atom of the pyrene skeleton were also weakly observed, and we showed that two tautomers that were protonated on a carbon atom of the aromatic ring could be distinguished by using electronic spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.