Abstract
Ozonolysis of isoprene, one of the most abundant volatile organic compounds in the atmosphere, proceeds through methyl vinyl ketone oxide (MVK-oxide), methacrolein oxide, and formaldehyde oxide (CH2OO) Criegee intermediates. The present study focuses on MVK-oxide, a four-carbon unsaturated carbonyl oxide intermediate, using vacuum ultraviolet photoionization at 118 nm and UV-visible induced depletion of the m/z = 86 mass channel to characterize its first π* ← π electronic transition. The electronic spectrum is broad and unstructured with its peak at 388 nm (3.2 eV). The MVK-oxide spectrum is shifted to a significantly longer wavelength than CH2OO and alkyl-substituted Criegee intermediates studied previously due to extended conjugation across the vinyl and carbonyl oxide groups. Electronic excitation results in rapid dissociation at λ ≤ 430 nm to methyl vinyl ketone and O 1D products, the latter detected by 2 + 1 resonance enhanced multiphoton ionization using velocity map imaging. Complementary electronic structure calculations (CASPT2(12,10)/AVDZ) predict two π* ← π transitions with significant oscillator strength for each of the four conformers of MVK-oxide with vertical excitation energies (and corresponding wavelengths) in the 3.1-3.6 eV (350-400 nm) and 4.5-5.5 eV (220-280 nm) regions. The computed electronic absorption profile of MVK-oxide, based on a Wigner distribution of ground state configurations and summed over the four conformers, is predicted to peak at 397 nm. UV-visible spectroscopy on the first π* ← π transition is shown by a combination of experiment and theory to provide a sensitive method for detection of the MVK-oxide Criegee intermediate that will enable further studies of its photochemistry and unimolecular and bimolecular reaction dynamics.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have