Abstract
Due to the formal analogy between Maxwell and Schr\"odinger equations, electromagnetic (e.m.) simulators may become a powerful numerical tool for the analysis of carrier transport in low-dimensional systems. In the following, we exploit this analogy in order to investigate the electronic properties of carbon nanotubes (CNTs). As a matter of fact, e.m. commercial solvers have reached a high degree of efficiency due to the demand of the high-speed and microwave circuit market. In this paper, we suggest applying e.m. numerical solvers to CNTs with a view to derive their main properties, such as dispersion curves and effective masses. In particular, we have used the ``CST Microwave Studio,'' implementing a finite element method (FEM). However, many other e.m. solvers are available, exploiting different approaches (FDTD, Method of Moment, TLM, etc.). In order to assess the validity of the approach, we have investigated an important example of band-gap distortion and splitting of degenerate states with respect to the angular momentum, due to an external electric field. The model can also be applied in order to better explain the behavior of metal-CNT contacts, representing a critical point for analysis and synthesis of nanotransistor devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.