Abstract

Recent experimental results suggest that higher mobility of perovskite-type ligand passivated PbS quantum dots (QDs) could be useful for efficient solar cell applications. However, theoretical understanding of the mechanism through first principal modeling is still lacking. In this study, electronic-, optical-, and temperature-dependent carrier mobility for perovskite ligand passivated PbS QD array is calculated by using the first-principles density functional theory (DFT) combined with the nonequilibrium Green’s function (NEGF) technique and a molecular dynamics (MD)-Landauer approach. It is found that formamidinium (FA)-liganded QDs have higher mobility and enhanced optical absorption comparing to that of Cl-liganded QDs. The difference could be understood through the intermediate band featured electronic structure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call