Abstract

Electronic excitation spectra of furan and pyrrole are reinvestigated by the symmetry-adapted cluster configuration-interaction method. The 47 and 46 lowest singlet and triplet electronic states are computed for furan and pyrrole, respectively. Two series (1a2 and 2b1) of low-lying Rydberg states and the valence π–π* excited states strongly influence each other in both furan and pyrrole. The present calculations give detailed and satisfactory theoretical assignments of the vacuum ultraviolet spectra and the electron energy-loss spectra of the two molecules. The similarities and differences in the electronic excitations between furan and pyrrole are discussed in detail. The accuracy and assignments of recent theoretical studies, i.e., complete active space second-order perturbation, multireference Møller–Plesset perturbation, second-order algebraic-diagrammatic construction, multireference double configuration interaction, and CC3, are compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.