Abstract

The electronic effects of supports on immobilized organometallic complexes impact their activity and lifetime, yet remain poorly understood. Here we describe a systematic study of the support effects experienced by an organometallic complex immobilized on doped hydrotalcite-like materials. To that end, we describe the synthesis and characterization of the first organometallic species immobilized on a palette of doped hydrotalcites via sulfonate linkers. The organometallic species consists of iridium N-heterocyclic carbene (NHC) carbonyl complex ([Na][Ir-(NHC-Ph-SO3)2(CO)2]), a highly active molecular catalyst for transfer hydrogenation of glycerol. The hydrotalcite supports are composed of Al, Mg, and a compatible transition-metal dopant (Fe, Cu, Ni, Zn). The materials were characterized extensively by STEM, XPS, TGA, PXRD, FT-IR, N2 desorption, ICP-AES, TPD, and microcalorimetry to probe the morphology and electronic properties of the support and elucidate structure–property relationships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call