Abstract
The electronic effects of supports on immobilized organometallic complexes impact their activity and lifetime, yet remain poorly understood. Here we describe a systematic study of the support effects experienced by an organometallic complex immobilized on doped hydrotalcite-like materials. To that end, we describe the synthesis and characterization of the first organometallic species immobilized on a palette of doped hydrotalcites via sulfonate linkers. The organometallic species consists of iridium N-heterocyclic carbene (NHC) carbonyl complex ([Na][Ir-(NHC-Ph-SO3)2(CO)2]), a highly active molecular catalyst for transfer hydrogenation of glycerol. The hydrotalcite supports are composed of Al, Mg, and a compatible transition-metal dopant (Fe, Cu, Ni, Zn). The materials were characterized extensively by STEM, XPS, TGA, PXRD, FT-IR, N2 desorption, ICP-AES, TPD, and microcalorimetry to probe the morphology and electronic properties of the support and elucidate structure–property relationships.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.