Abstract

The hetero-epitaxially engineered magnetic phases, formed due to entanglement of the spin, charge and lattice degrees of freedom, at the atomically sharp interfaces of complex oxide heterostructures are indispensable for devising multifunctional devices. In the quest for novel and superior spintronics functionalities, we have explored the interface magnetism in the epitaxial bilayer of atypical magnetic and electronic states, i.e., of paramagnetic metallic and antiferromagnetic (AFM) insulating phases. In this framework, we observe an unusually strong ferromagnetic order and large exchange-bias fields generated at the interface of the bilayers of metallic CaRuO3 and AFM insulating manganite. The magnetic moment of the interface ferromagnetic order increases linearly with increasing thickness (7-90 nm) of the metallic CaRuO3 layer. This linear scaling signifying an electronic (non-magnetic) control of the interface magnetism and a non-monotonic dependence of the exchange-bias on metallic layers evolve as novel spintronics attributes in atypical bilayers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call