Abstract

On the basis of first principles density functional calculations, we investigated the effect of spin flip and hole doping on the spin, charge and lattice degrees of freedom in the square planar CuO2 layers of the high-Tc cuprate superconductors. The local responses of the CuO2 layers to these point defects appear as spatially extended spin-charge-lattice coupled polarons in ferromagnetic clusters and hence introduce heterogeneity. The results demonstrate the need to treat the spin, charge and lattice degrees of freedom on an equal footing in describing the high-Tc superconductivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.