Abstract

In this work, novel procedures are developed to measure in-plane and through-plane electronic conductivities of catalyst layers (CLs) for polymer electrolyte membrane fuel cells. The developed procedures are used in a parametric study on different CL designs to investigate effects of different composition and fabrication parameters, including ionomer to carbon weight ratio (I/C ratio), dry milling time of the catalyst powder, and drying temperature of the catalyst ink. Results show that CLs have anisotropic electronic conductivity with through-plane values being three orders of magnitude lower than the in-plane values. The reason for this anisotropy is speculated to be alignment of fibrillar nanostructures of ionomer by large shear forces during coating, which could result in better carbon-carbon contact in the in-plane direction. A simple order of magnitude analysis shows the significance of poor through-plane conduction for fuel cell performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.