Abstract

State-of-the-art calculations of electronic band structures, density of states and frequency-dependent optical properties have been reported for Srn+1TinO3n+1 (n=1, 2, 3, ∞) compounds. These materials possess indirect wide energy band gaps. The frequency dependent optical properties of n=1,2,3 compounds show considerable anisotropy and positive birefringence. The conduction band minimum is originates from Ti-d states, while the valence band maximum is governed by O-p states. The bandwidth of the Ti-d states is responsible for the decrease in the energy band gap as n changes from 1 to 2, 3, and ∞. We have analyzed the degree of hybridization on the basis of the ratio of the orbital overlapping within the muffin tin sphere.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.