Abstract
Using density functional theory (DFT) approach, we have investigated the effect of strain on the electronic properties of two-dimensional (2D) boron phosphide (BP) sheet. With the increase in uniaxial and biaxial tensile strain band gap increases while band gap decreases and becomes metallic with the increase in uniaxial and biaxial compressive strain. Electrical and thermal transport properties of zigzag and armchair 2D BP sheets have been explored using nonequilibrium Green's function formalism (NEGF) and the changes in the nature of I–V characteristics with the application of strain have been reported. The magnitude of the current decreases with the increase of strain value along transport direction for both zigzag and armchair 2D BP sheets. For unstrained systems, the magnitude of current is nearly same for both zigzag and armchair 2D BP sheets. However, for a particular strain value, magnitude of current is more for zigzag sheet compared to armchair sheet. Though both zigzag and armchair 2D BP sheets have reasonably high ZTe which confirms its potentiality for designing efficient thermoelectric material but zigzag sheet is more preferable for thermoelectric application compared to armchair sheet due to its higher ZTe in comparison to armchair sheet.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.