Abstract

This article describes a number of theoretical works and methods dedicated to the analysis of the atomic and electronic structure, doping properties and transport characteristics of silicon nanowires (SiNWs). The goal is to show how quantum confinement and dimensionality effects can intrinsically change the behavior of SiNWs as compared to their bulk and thin film counterparts. The article begins with a review of work done on surface reconstructions and electronic structure of SiNWs as a function of system doping and passivation. It then considers the problem of doping in SiNWs as well as the methodology typically used to analyze the problems of transport. It also discusses the electronic transport properties of SiNWs as a function of dopant type, along with their chemical functionalization. Finally, it demonstrates how surface dangling-bond defects trap the impurities in SiNWs and neutralize them.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call