Abstract
AbstractEmpirical nonlocal pseudopotentials of diamond which can describe the electronic energy structure over a wide energy range of more than 20 eV from the bottom of the valence band are determined. The nonlocality of the potential is described by the Gaussian model. The optimized nonlocal pseudopotential reproduces the energy band structure within 5%. The valence electron and positron charge densities in diamond are obtained from wave functions derived from this model at normal and under hydrostatic pressure. It is found that the positron density is maximum in the open interstices and is excluded not only as usual, from the ion cores but also to a considerable degree from the valence bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.