Abstract

Recent research in ultrawide-bandgap (UWBG) semiconductors has focused on traditional materials such as Ga2O3, AlGaN, AlN, cubic BN, and diamond; however, some materials exhibiting a single perovskite structure have been known to yield bandgaps above 3.4 eV, such as BaZrO3. In this work, we propose two materials to be added to the family of UWBG semiconductors: Ba2CaTeO6 exhibiting a double perovskite structure and Ba2K2Te2O9 with a triple perovskite structure. Using first-principles hybrid functional calculations, we predict the bandgaps of all the studied systems to be above 4.5 eV, with strong optical absorption in the ultraviolet region. Furthermore, we show that holes have a tendency to get trapped through lattice distortions in the vicinity of oxygen atoms, with an average trapping energy of 0.25 eV, potentially preventing the enhancement of p-type conductivity through traditional chemical doping.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.