Abstract

In the present work, we investigated the effect of an intense non-resonant laser field on the electronic structure and the nonlinear optical properties (the light absorption, the optical rectification) of a GaAs asymmetric double quantum dot under a strong probe field excitation. The calculations were performed within the compact-density matrix formalism under the steady state conditions with the use of the effective mass approximation. The obtained results show that: (i) the electronic structure and, consequently, the optical properties are sensitive to the dressed potential; (ii) the changes in the incident light polarisation lead to blue or redshifts in the intraband optical absorption spectrum; (iii) for specific values of the structure parameters and under an intense laser illumination, the asymmetric double quantum dots can be a good candidate for NOR emission of THz radiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.