Abstract

The electronic and magnetic properties of Fe-, Co-, and Ni-decorated two dimensional (2D) BC3 are systematically investigated by first-principles calculations. We find that the Fe, Co, and Ni atoms can be strongly adsorbed on the hollow sites of 2D BC3. Fe and Co adatoms are more stable when adsorbed on the hollow sites of the carbon rings in the 2D BC3, while the hollow sites of boron-carbon rings in the 2D BC3 are the most stable sites for the adsorption of Ni adatoms. These proposed metal–BC3 complexes exhibit interesting electronic and magnetic behaviors. In particular, the Fe–BC3 and Co–BC3 complexes are metals with magnetic ground states , while the Ni–BC3 complex behaves as a nonmagnetic semiconductor with a direct bandgap. Furthermore, our magnetic analysis reveals that induced magnetism in the Fe–BC3 and Co–BC3 complexes arises from their local magnetic moments. Functionalization of 2D BC3 through these metal–adatom adsorption appears to be a promising way to extend its applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.