Abstract

Recently it has been shown that experimental electron-electron double resonance (ELDOR) spectra of amorphous glasses containing free radicals with inhomogeneously broadened electron paramagnetic resonance (EPR) spectra can be analyzed using a set of coupled rate equations for the electron polarizations of frequency bins composing these spectra, named the eSD (electron spectral diffusion) model. The rate matrix defining these equations has elements depending on the microwave, the spin-lattice relaxation rates and on eSD rate constants responsible for polarization exchange. In this study, we show that in addition to the static dipolar flip-flop terms in the Hamiltonian a zero-quantum electron cross-relaxation mechanism can be responsible for the polarization exchange process in our samples. This conclusion was reached by calculating the EPR lineshapes of a system of 11 coupled electrons exposed to microwave irradiation using an eigenstate population rate equation derived from the spin density vector rate equation in Liouville space. These equations involve all terms of the Hamiltonian and in addition rate constants representing longitudinal relaxation and cross-relaxation mechanisms as well as MW irradiation. The results of these calculations are compared with the results obtained from the eSD model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call