Abstract

We have characterized the outer-membrane decaheme cytochromes OmcA and MtrC from Shewanella oneidensis MR-1 at the single-molecule level using scanning tunneling microscopy (STM) and tunneling spectroscopy (TS). These cytochrome proteins are of great interest because they are thought to mediate bacterial electron transfer reactions in anoxic waters that control the reductive dissolution of oxide minerals. In our study, to characterize the electron transfer properties of these proteins on a model surface, the purified cytochromes were chemically immobilized as molecular monolayers on Au(111) substrates via a recombinant tetra-cysteine sequence as verified by X-ray photoelectron spectroscopy. Atomic force microscopy images confirm the monolayer films were ∼5–8 nm thick which is consistent with the apparent lateral dimensions of individual cytochrome molecules obtained with STM. Current–voltage TS of single cytochrome molecules revealed that OmcA and MtrC have different abilities to mediate tunneling current despite having otherwise very similar molecular and biochemical properties. These observations suggest that, based on their electron tunneling properties, the two cytochromes could have specific roles during bacterial metal reduction. Additionally, this study establishes single-molecule STM/TS as an effective means for revealing insights into biogeochemical redox processes in the environment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call