Abstract
Studying the electrical and structural properties of the interface of the gate oxide (SiO2) with silicon carbide (4H-SiC) is a fundamental topic, with important implications for understanding and optimising the performances of metal-oxide-semiconductor field effect transistor (MOSFETs). In this paper, near interface oxide traps (NIOTs) in lateral 4H-SiC MOSFETs were investigated combining transient gate capacitance measurements (C–t) and state of the art scanning transmission electron microscopy in electron energy loss spectroscopy (STEM-EELS) with sub-nm resolution. The C–t measurements as a function of temperature indicated that the effective NIOTs discharge time is temperature independent and electrons from NIOTs are emitted toward the semiconductor via-tunnelling. The NIOTs discharge time was modelled also taking into account the interface state density in a tunnelling relaxation model and it allowed us to locate traps within a tunnelling distance of up to 1.3 nm from the SiO2/4H-SiC interface. On the other hand, sub-nm resolution STEM-EELS revealed the presence of a non-abrupt (NA) SiO2/4H-SiC interface. The NA interface shows the re-arrangement of the carbon atoms in a sub-stoichiometric SiOx matrix. A mixed sp2/sp3 carbon hybridization in the NA interface region suggests that the interfacial carbon atoms have lost their tetrahedral SiC coordination.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.