Abstract
Novel electrode configurations, such as coplanar grids, have been successful in mitigating the effects of poor hole transport in CdZnTe gamma-ray detectors. However, poor material uniformity remains a major problem preventing the widespread application of such detectors in gamma-ray spectroscopy. Uniform electron transport is critical for achieving good gamma-ray detection performance in the coplanar-grid configuration. The authors have investigated the use of alpha-particle response as a quick and simple electron transport uniformity screening technique for material selection, and as a method to study other spectral broadening mechanisms in coplanar-grid detectors. The method consists of uniformly illuminating, with an alpha-particle source, the cathode side of the CdZnTe crystal in either a planar or a coplanar-grid detector configuration. In the planar geometry, the variation in the measured pulse heights is dictated in large part by the uniformity of the electron transport. An alpha-particle spectrum that has a single sharp peak with little background indicates uniform electron transport and, consequently, that the CdZnTe crystal should result in a coplanar-grid detector with good gamma-ray detection performance. In the coplanar geometry, the measured pulse-height variation provides information on additional sources of spectral broadening. In this paper the authors present the results of their study to measure the correlation between these simple alpha-particle measurements and the coplanar-grid gamma-ray detector response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.